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Functionalizations of C-H bonds are important processes that
have attracted considerable attention recently.1 A special case is
the activation of allylic C-H bonds, and there are many reports in
the literature on metal-mediated allylic oxidations.2-5 Most of these
reactions, however, proceed with moderate selectivity and often
with the use of stoichiometric amounts of the metal. A few examples
of catalytic allylic oxidations are known, and these include
palladium- and copper-catalyzed allylic acyloxylation to give allylic
esters.3,4 Allylic oxidations involving carbon-carbon bond forma-
tion are scarce and are only known with the use of stoichiometric
amounts of metal.6 For example, it is known that palladium(II)
complexes can cleave allylic C-H bonds to give (π-allyl)palladium
complexes.7 Activation of theseπ-allyl complexes by phosphine
ligands and subsequent nucleophilic attack by a stabilized carbanion
lead to C-C bond formation in the allylic position.6,8 The
requirement of stoichiometric amounts of metal limits the synthetic
utility of these reactions.

We have recently been involved in palladium-catalyzed reactions
with allenes.9,10 In the present study, we have found that allene-
substituted olefins1 cyclize oxidatively in the presence of catalytic
amounts of Pd(O2CCF3)2 to give 2 (Scheme 1). This is the first
example of an allylic oxidation leading to carbon-carbon bond
formation employingcatalytic amounts of palladium(II).11

The requisite starting materials1 were readily obtained from the
corresponding allylic acetates3. A Pd(0)-catalyzed allylic substitu-
tion of the acetate with sodium dimethyl malonate to give4 follow-
ed by reaction with bromoallene5 furnished1a-g (Scheme 2).

Treatment of allene-substituted olefins1a-d with 1 mol % Pd-
(O2CCF3)2 and 2 equiv ofp-benzoquinone (BQ) in refluxing THF
for 4-6 h gave2a-d in good to high yields (entries 1-4, Table
1). The dependence of the substrate ring size on the outcome of
the cyclization was investigated (entries 5-7, Table 1). The five-
membered ring (1e) cyclized to give a mixture of isomers2e and
2e′. The formation of2e′ can be explained by a Pd(II)-catalyzed
isomerization of2e.

In contrast to the five- and six-memebered ring substrates1a-
e, which all gave thecis-fused ring systems, the seven-membered
ring substrate1f afforded thetrans-fused ring system2f as a single

isomer in 82% yield. The stereochemistry of2f was unambiguously
assigned by NOE measurements. When the ring size was further
increased to an eight-membered ring1g, thecis-fused ring system
was again obtained as the only product. The acyclic substrate1h
gave triene2h. Interestingly, allylic pivalatetrans-1i, in which the
allenic moiety and the ester function are trans to one another, under-
went oxidative cyclization in refluxing toluene with Pd(OAc)2 as the
catalyst to give vinylic pivalate2i.12 On the other hand, the isomeric
substratecis-1i, with the pivalate and the allenic moiety cis to one
another, cyclized to give2a. The latter reaction is not an oxidation
reaction but formally an elimination of pivalic acid with cyclization.

Scheme 1

Scheme 2 a

a (a) NaH, (MeO2C)2CH2, Pd(OAc)2, PPh3, THF, reflux; (b) NaH,5,
THF, reflux.

Table 1. Palladium(II)-Catalyzed Oxidative Carbocyclization of
Allene-Substituted Olefins 1a

a Unless otherwise noted,1, Pd(O2CCF3)2 (1 mol %), and BQ (2 equiv)
were dissolved in THF (5 mL/mmol) and refluxed for 4 h.b 6 h of reflux
was required for full conversion.c 12 h of reflux was required for full
conversion.d Refluxing toluene and Pd(OAc)2 (2 mol %) were used.
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If an additional olefin was placed in the allenic side chain, or if
two methyl groups were placed in the allylic position, the cyclization
was completely inhibited under the present reaction conditions.

To gain further insight into the mechanism of the cyclization of
1 to 2, deuterated compoundstrans-1a-d1 andcis-1f-d1 were pre-
pared.13 Oxidation oftrans-1a-d1 andcis-1f-d1 by BQ in the presence
of catalytic amounts of Pd(O2CCF3)2 gavecis-2a-d1 andtrans-2f-
d1, respectively, with complete retention of deuterium (Scheme 3).

At least two mechanisms can be considered for these palladium-
catalyzed oxidative carbon-carbon bond forming reactions. A
mechanism via a (π-cyclohexen)palladium complex (trans-1a-d1,
Scheme 4) with palladium syn to the pending allene followed by
nucleophilic attack on palladium by the allene14 (A) and subsequent
insertion would giveB. Subsequent synâ-hydride elimination
would give trans-2a-d1. Also, formation of a (η3-cyclohexenyl)-
palladium complex from the top side of the ring (C) followed by
insertion of the allene into the allyl-palladium bond15 (D), and
subsequentâ-hydride elimination, would account for the retention
of deuterium. A Pd(II)/Pd(IV) cycloaddition path seems less likely
but cannot be excluded.16

The seven-membered ring analoguecis-1f-d1 would follow
analogous mechanisms but with palladium on the opposite side of
the ring as the pendant allene.

Independent of which mechanism that operates, the results of
the deuterium experiment require that palladium binds to the six-
membered ring syn to the pending allene because both allylic C-H
bond cleavage andâ-elimination are syn-selective processes.
Analogously, Pd(II) must bind anti to the side chain for the seven-
membered ring. However, formation of2h from 1h is only
consistent with the first proposal, involving intermediatesA and
B. Furthermore, when1a and 6 were allowed to react in a
competitive reaction, only1a was converted to2a, whereas6
remained unreacted (Scheme 5).17 This suggests that a pathway

via (π-allyl)palladium intermediateC (Scheme 4) is less likely.
However, another interpretation is that the cyclohexene double bond
is not forming a favorable chelate in6 required to give (π-allyl)-
palladium intermediateC (cf. trans-1a-d1 f C, Scheme 4).

In summary, we have found that allene-substituted olefins
undergo an oxidative cyclization, in good to excellent yields, in
the presence of Pd(O2CCF3)2 as catalyst andp-benzoquinone as
the stoichiometric oxidant. The fact that the catalyst loading can
be as low as 1 mol % and that the starting materials are readily
accessible makes this oxidation attractive in organic synthesis.
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(7) (a) Hüttel. Synthesis1970, 225-255. (b) Trost, B. M.; Strege, P. E.; Weber,

L.; Fullerton, T. J.; Dietsche, J. J.J. Am. Chem. Soc.1978, 100, 3407-
3415.

(8) Trost, B. M.; Weber, L.; Strege, P. E.; Fullerton, T. J.; Dietsche, T. J.J.
Am. Chem. Soc.1978, 100, 3416-3426.

(9) (a) Jonasson, C.; Horva´th, A.; Bäckvall, J. E.J. Am. Chem. Soc.2000,
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